We wish to give our partners the tools to produce to the highest standard, while helping them to produce as cost effectively as possible with Q.C. tools throughout the factory.

function

The SCITEQ Charpy pendulum impact tester is used to conduct resilience tests on rigid plastic materials in order to determine their impact fragility characteristics under standard stress conditions. The test method conforms to ISO 179 - Part 1 (non-instrumented impact test).

features

The SCITEQ Charpy pendulum impact tester is easy to operate with its simple and to-the-point menu structure. The test specimen can be cut by means of a copy milling machine.

The test specimen, supported near its ends as a horizontal beam, is impacted by a single blow of a striker, with the line of impact midway between the supports, and bent at a high, nominally constant, velocity.

construction

The SCITEQ Charpy pendulum impact tester has a frame made from steel and consists of a rotation shaft and a pendulum stop unit. In addition there is an anvil a level meter, a control panel, three feet and an eyebolt.

Further, a specimen support is supplied along with a centering device is supplied for notched Charpy specimens.

The pendulum either has a capacity of either 7.5/15 Joule or 25/50 Joule.

On the LCD display the absorbed energy in joules after test specimen impact will be shown. Recorded test results can be analysed further via equations specified in the standard.

LCD control panel with operating buttons

highlights

- high accuracy tool
- easy and convenient operation
- steel construction
- high quality components
- high safety level

associated equipment

- essential equipment

copy milling machine
technical specifications

Charpy pendulum impact tester

- Impact speed: 3.8 m/s
- Impact energy: 7.5J/15J or 25J/50J
- Release angle: 150°
- Measurement accuracy: ±0.1%
- Resolution: 1%
- Display: LCD
- Electrical supply: 220-240V AC, 50-60Hz
- Main dimensions (L x W x H): 550mm x 300mm x 890mm
- Weight: 108 kg

force applied by means of the Charpy testing method